Models of Set Theory II - Winter 2013

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht

Let μ denote Lebesgue measure on \mathbb{R}. A set $A \subseteq \mathbb{R}$ has strong measure 0 if for every sequence $\left(\epsilon_{n}\right)_{n \in \omega}$ with $\epsilon_{n}>0$ for all n, there is a sequence $\left(U_{n}\right)_{n \in \omega}$ of open intervals of \mathbb{R} with $A \subseteq \bigcup_{n \in \omega} U_{n}$ and $\mu\left(U_{n}\right) \leq \epsilon_{n}$.

For subsets of the Cantor space ${ }^{\omega} 2$, we define strong measure 0 analogously, where open intervals are replaced by basic open sets N_{t}, and $\mu\left(N_{t}\right):=2^{-|t|}$.

Problem 5 (8 Points). (a) Suppose that κ is an infinite cardinal. Prove from $M A_{\kappa}$ that every set $A \subseteq \mathbb{R}$ of size $\leq \kappa$ has strong measure 0 .
(b) Suppose that $T \subseteq{ }^{<\omega} 2$ is such that (T, \subseteq) is isomorphic to ($\left.{ }^{<\omega} 2, \subseteq\right)$. Show that

$$
A:=[T]=\left\{x \in{ }^{\omega} 2 \mid \forall n \in \omega(x \upharpoonright n \in T)\right\}
$$

does not have strong measure 0 .

Consider the relation \leq^{*} defined in Problem 4(c). A family $\mathcal{F} \subseteq{ }^{\omega} \omega$ is unbounded if \mathcal{F} has no upper bound $g: \omega \rightarrow \omega$ with respect to \leq^{*}. The bounding number \mathfrak{b} is defined as the least size of an unbounded family $\mathcal{F} \subseteq{ }^{\omega} \omega$.

Problem 6 (5 Points). Consider Hechler forcing from Problem 33, Models of Set Theory I (available on our website at teaching: lectures in past semesters). Suppose that κ is an infinite cardinal. Prove from $M A_{\kappa}$ that $\mathfrak{b} \geq \kappa$.

A family $\mathcal{F} \subseteq{ }^{\omega} \omega$ is dominating if for every $g: \omega \rightarrow \omega$, there is a function $f \in \mathcal{F}$ with $g \leq^{*} f$. The dominating number \mathfrak{d} is defined as the least size of a dominating family $\mathcal{F} \subseteq{ }^{\omega} \omega$.

Let $\mathcal{M}\left({ }^{\omega} \omega\right)$ denote the set of meager subsets of ${ }^{\omega} \omega$. Let $\operatorname{cov}\left(\mathcal{M}\left({ }^{\omega} \omega\right)\right)$ denote the least size of a family of meager subsets of ${ }^{\omega} \omega$ whose union is ${ }^{\omega} \omega$. Let non $\left(\mathcal{M}\left({ }^{\omega} \omega\right)\right)$ denote the least size of a nonmeager subset of ${ }^{\omega} \omega$.

Problem 7 (9 Points). Prove the following inequalities.
(a) $\mathfrak{b} \leq \operatorname{cof}(\mathfrak{d})$.
(b) $\mathfrak{b} \leq \operatorname{non}\left(\mathcal{M}\left({ }^{\omega} \omega\right)\right)$.
(c) $\operatorname{cov}\left(\mathcal{M}\left({ }^{\omega} \omega\right)\right) \leq \mathfrak{d}$.

A partial order (\mathbb{P}, \leq) is Knaster if every uncountable subset of \mathbb{P} has a uncountable subsets consisting of pairwise compatible elements. The next problem shows from $M A_{\omega_{1}}$ that c.c.c. implies Knaster.

Problem 8 (6 Points). Suppose that $\mathbb{P}=(\mathbb{P}, \leq)$ is a c.c.c. partial order and that $X \subseteq \mathbb{P}$ is uncountable.
(a) Show that there is some $p_{0} \in X$ such that every $p \leq p_{0}$ is compatible with uncountably many elements of X.
(b) Prove from $M A_{\omega_{1}}$ that there is a filter $G \subseteq \mathbb{P}$ such that $G \cap X$ is uncountable.

