Let μ denote Lebesgue measure on \mathbb{R} . A set $A \subseteq \mathbb{R}$ has strong measure θ if for every sequence $(\epsilon_n)_{n \in \omega}$ with $\epsilon_n > 0$ for all n, there is a sequence $(U_n)_{n \in \omega}$ of open intervals of \mathbb{R} with $A \subseteq \bigcup_{n \in \omega} U_n$ and $\mu(U_n) \leq \epsilon_n$.

For subsets of the Cantor space ${}^{\omega}2$, we define *strong measure* 0 analogously, where open intervals are replaced by basic open sets N_t , and $\mu(N_t) := 2^{-|t|}$.

- **Problem 5** (8 Points). (a) Suppose that κ is an infinite cardinal. Prove from MA_{κ} that every set $A \subseteq \mathbb{R}$ of size $\leq \kappa$ has strong measure 0.
 - (b) Suppose that $T \subseteq {}^{<\omega}2$ is such that (T, \subseteq) is isomorphic to $({}^{<\omega}2, \subseteq)$. Show that

$$A := [T] = \{ x \in {}^{\omega}2 \mid \forall n \in \omega \ (x \upharpoonright n \in T) \}$$

does not have strong measure 0.

Consider the relation \leq^* defined in Problem 4(c). A family $\mathcal{F} \subseteq {}^{\omega}\omega$ is unbounded if \mathcal{F} has no upper bound $g: \omega \to \omega$ with respect to \leq^* . The bounding number \mathfrak{b} is defined as the least size of an unbounded family $\mathcal{F} \subseteq {}^{\omega}\omega$.

Problem 6 (5 Points). Consider Hechler forcing from Problem 33, Models of Set Theory I (available on our website at teaching: lectures in past semesters). Suppose that κ is an infinite cardinal. Prove from MA_{κ} that $\mathfrak{b} \geq \kappa$.

A family $\mathcal{F} \subseteq {}^{\omega}\omega$ is *dominating* if for every $g \colon \omega \to \omega$, there is a function $f \in \mathcal{F}$ with $g \leq^* f$. The *dominating number* \mathfrak{d} is defined as the least size of a dominating family $\mathcal{F} \subseteq {}^{\omega}\omega$.

Let $\mathcal{M}(^{\omega}\omega)$ denote the set of meager subsets of $^{\omega}\omega$. Let $\operatorname{cov}(\mathcal{M}(^{\omega}\omega))$ denote the least size of a family of meager subsets of $^{\omega}\omega$ whose union is $^{\omega}\omega$. Let $\operatorname{non}(\mathcal{M}(^{\omega}\omega))$ denote the least size of a nonmeager subset of $^{\omega}\omega$.

Problem 7 (9 Points). Prove the following inequalities.

- (a) $\mathfrak{b} \leq cof(\mathfrak{d})$.
- (b) $\mathfrak{b} \leq \operatorname{non}(\mathcal{M}(^{\omega}\omega)).$
- (c) $\operatorname{cov}(\mathcal{M}({}^{\omega}\omega)) \leq \mathfrak{d}.$

A partial order (\mathbb{P}, \leq) is *Knaster* if every uncountable subset of \mathbb{P} has a uncountable subsets consisting of pairwise compatible elements. The next problem shows from MA_{ω_1} that c.c.c. implies Knaster.

Problem 8 (6 Points). Suppose that $\mathbb{P} = (\mathbb{P}, \leq)$ is a c.c.c. partial order and that $X \subseteq \mathbb{P}$ is uncountable.

- (a) Show that there is some $p_0 \in X$ such that every $p \leq p_0$ is compatible with uncountably many elements of X.
- (b) Prove from MA_{ω_1} that there is a filter $G \subseteq \mathbb{P}$ such that $G \cap X$ is uncountable.

Please hand in your solutions on Monday, November 04 before the lecture.